Adaptive Resonance Theory

Gail A. Carpenter & Stephen Grossberg

Department of Mathematics & Center for Adaptive Systems
Boston University
677 Beacon Street
Boston, Massachusetts 02215 USA

Encyclopedia of Machine Learning and Data Mining
Claude Sammut & Geoff Webb (Editors)
Springer-Verlag

November 2014

Update of article:

Correspondence to: gail@bu.edu, steve@bu.edu
ABSTRACT

Computational models based on cognitive and neural systems are now deeply embedded in the standard repertoire of machine learning and data mining methods, with intelligent learning systems enhancing performance in nearly every existing application area. Beyond data mining, this article shows how models based on Adaptive Resonance Theory (ART) may provide entirely new questions and practical solutions for technological applications. ART models carry out hypothesis testing, search, and incremental fast or slow, self-stabilizing learning, recognition, and prediction in response to large non-stationary databases (big data). Three computational examples, each based on the distributed ART neural network, frame questions and illustrate how a learning system (each with no free parameters) may enhance the analysis of large-scale data. Performance of each task is simulated on a common mapping platform, a remote sensing dataset called the Boston Testbed, available online along with open-source system code. Key design elements of ART models and links to software for each system are included. The article further points to future applications for integrative ART-based systems that have already been computationally specified and simulated. New application directions include: autonomous robotics, general-purpose machine vision, audition, speech recognition, language acquisition, eye movement control, visual search, figure-ground separation, invariant object recognition, social cognition, object and spatial attention, scene understanding, space-time integration, episodic memory, navigation, object tracking, system-level analysis of mental disorders, and machine consciousness.

ADAPTIVE RESONANCE THEORY

Adaptive Resonance Theory (ART) neural networks model real-time hypothesis testing, search, learning, recognition, and prediction. Since the 1980s, these models of human cognitive information processing have served as computational engines for a variety of neuromorphic technologies [http://techlab.bu.edu/resources/articles/C5]. This article points to a broader range of technology transfers that bring new methods to new problem domains. It describes applications of three specific systems: ART knowledge discovery, self-supervised ART, and biased ART; and summarizes future application areas for large-scale, brain-based model systems.

ART design elements

In this article, ART refers generally to a theory of cognitive information processing and to an inclusive family of neural models. Design principles derived from scientific analyses and design constraints imposed by targeted applications have jointly guided the development of variants of the basic systems.

Stable fast learning with distributed and winner-take-all coding

ART systems permit fast online learning, whereby long-term memories reach their asymptotes on each input trial. With slow learning, memories change only slightly on each trial. One characteristic that distinguishes classes of ART systems from one another is the nature of their patterns of persistent activation at the coding field F_2 (Figure 1). The coding field is functionally analogous to the hidden layer of multilayer perceptrons [Encyclopedia cross reference]. At the perceptron hidden layer, activation is distributed across many nodes, learning needs to be slow, and activation does not persist once inputs are removed. The ART coding field is a competitive network where, typically, one or a few nodes in the normalized F_2 pattern y sustain persistent activation, even as their generating inputs shift, habituate, or vanish. The pattern y persists until an active reset signal (Figure 1c) prepares the coding
field to register a new F_0-to-F_2 input. Early ART networks [Carpenter & Grossberg, 1987; Carpenter, Grossberg, & Reynolds, 1991; Carpenter, Grossberg, Markuzon, Reynolds, & Rosen, 1992] employed localist, or winner-take-all coding, whereby strongly competitive feedback results in only one F_2 node staying active until the next reset. With fast as well as slow learning, memory stability in these early networks relied on their winner-take-all architectures.

Figure 1

Achieving stable fast learning with distributed code representations presents a computational challenge to any learning network. In order to meet this challenge, distributed ART [Carpenter, 1997] introduced a new network configuration (Figure 1) in which system fields are identified with cortical layers [Carpenter, 2001]. New learning laws (dInstar and dOutstar) that realize stable fast learning with distributed coding predict adaptive dynamics between cortical layers.

Distributed ART (dART) systems employ a new unit of long-term memory, which replaces the traditional multiplicative weight [Encyclopedia cross reference] with a dynamic weight [Carpenter, 1994]. In a path from the F_2 coding node j to the F_1 matching node i, the dynamic weight equals the amount by which coding node activation y_j exceeds an adaptive threshold τ_y. The total signal σ_j from F_2 to the i^{th} F_1 node is the sum of these dynamic weights, and F_1 node activation x_i equals the minimum of the top-down expectation σ_j and the bottom-up input A_i. During dOutstar learning, the top-down pattern σ converges toward the matched pattern \mathbf{x}.

When coding node activation y_j is below τ_y, the dynamic weight is zero and no learning occurs in that path, even if y_j is positive. This property is critical for stable fast learning with distributed codes. Although the dInstar and dOutstar laws are compatible with F_2 patterns \mathbf{y} that are arbitrarily distributed, in practice, following an initial learning phase, most changes in paths to and from a coding node j occur only when its activation y_j is large. This type of learning is therefore called quasi-localist. In the special case where coding is winner-take-all, the dynamic weight is equivalent to a multiplicative weight that formally equals the complement of the adaptive threshold.

Complement coding: Learning both absent features and present features

ART networks employ a preprocessing step called complement coding [Carpenter, Grossberg, & Rosen, 1991], which models the nervous system’s ubiquitous computational design known as opponent processing [Hurvich & Jameson, 1957]. Balancing an entity against its opponent, as in opponent colors such as red vs. green or agonist-antagonist muscle pairs, allows a system to act upon relative quantities, even as absolute magnitudes fluctuate unpredictably. In ART systems, complement coding is analogous to retinal ON-cells and OFF-cells [Schiller, 1982]. When the learning system is presented with a set of input features $\mathbf{a} \equiv (a_1...a_i...a_M)$, complement coding doubles the number of input components, presenting to the network an input \mathbf{A} that concatenates the original feature vector and its complement (Figure 1a).

Complement coding produces normalized inputs \mathbf{A} that allow a model to encode features that are consistently absent on an equal basis with features that are consistently present. Features that are sometimes absent and sometimes present when a given F_2 node is highly active are regarded as uninformative with respect to that node, and the corresponding present and absent top-down feature
expectations shrink to zero. When a new input activates this node, these features are suppressed at the match field \(F_i \) (Figure 1b). If the active code then produces an error signal, attentional biasing can enhance the salience of input features that it had previously ignored, as described below.

Matching, attention, and search

A neural computation central to both scientific and technological analyses is the *ART matching rule* [Carpenter & Grossberg, 1987], which controls how attention is focused on critical feature patterns via dynamic matching of a bottom-up sensory input with a top-down learned expectation. Bottom-up/top-down pattern matching and attentional focusing is, perhaps, the primary feature common to all ART models across their many variations. Active input features that are not confirmed by top-down expectations are inhibited (Figure 1b). The remaining activation pattern defines a focus of attention, which, in turn, determines what feature patterns are learned. Basing memories on attended features rather than whole patterns supports the design goal of encoding stable memories with fast as well as slow learning. Encoding attended feature subsets also enables one-to-many learning, where the system may attach many context-dependent labels (*Spot*, *dog*, *animal*) to one input. This capability promotes knowledge discovery (*Spot ⇒ dog* and *dog ⇒ animal*) in a learning system that experiences one input at a time, with no explicit connection between inputs.

When the match is good enough, \(F_2 \) activation persists and learning proceeds. Where they exceed the corresponding bottom-up input components, top-down signals decay as expectations converge toward the attended pattern at \(F_i \). The coding field \(F_c \) contains a reserve of uncommitted coding nodes, which compete with the previously active committed nodes. When a previously uncommitted node is first activated during supervised learning, it is associated with its designated output class. During testing, selection of an uncommitted node means *I don’t know*. ART networks for supervised learning are called *ARTMAP* [Carpenter, Grossberg, & Reynolds, 1991; Carpenter et al., 1992].

A mismatch between an active top-down expectation and the bottom-up input leads to a parallel memory search (Figure 1c). The ART matching criterion is set by a vigilance parameter \(\rho \). Low vigilance permits the learning of broad classes, across diverse exemplars, while high vigilance limits learning to narrow classes. When a new input arrives, vigilance equals a baseline level. Baseline vigilance is set equal to zero to maximize generalization. ARTMAP vigilance increases following a predictive error or negative reinforcement [*Encyclopedia* cross reference]. The internal computation that determines how far \(\rho \) rises to correct the error is called *match tracking* [Carpenter, Grossberg, & Reynolds, 1991]. As vigilance rises, the network pays more attention to how well top-down expectations match the bottom-up input. The match tracking modification MT– [Carpenter & Markuzon, 1998] also allows the system to learn inconsistent cases. For example, three similar, even identical, map regions may have been correctly labeled by different observers as *ocean* or *water* or *natural*. The ability to learn one-to-many maps, which can label a single test input as *ocean* and *water* and *natural*, is a key feature of the ART knowledge discovery system described below.

APPLICATIONS

Three computational examples illustrate how cognitive and neural systems can introduce new approaches to the analysis of large datasets. Application 1 (self-supervised ART) addresses the question: how can a neural system learning from one example at a time absorb information that is inconsistent but correct, as when a family pet is called *Spot* and *dog* and *animal*, while rejecting similar incorrect information, as when the same pet is called *wolf*? How does this system transform scattered information
into knowledge that dogs are animals, but not conversely? Application 2 (ART knowledge discovery) asks: how can a real-time system, initially trained with a few labeled examples and a limited feature set, continue to learn from experience, without supervision, when confronted with oceans of additional information, without eroding reliable early memories? How can such individual systems adapt to their unique application contexts? Application 3 (biased ART) asks: how can a neural system that has made an error refocus attention on features that it initially ignored?

The Boston Testbed

The Boston Testbed was developed to compare performance of learning systems applied to challenging problems of spatial analysis. Each multi-spectral Boston image pixel produces 41 feature values: six Landsat 7 Thematic Mapper (TM) bands at 30m resolution; two thermal bands at 60m resolution; one panchromatic band at 15m resolution; and 32 derived bands representing local contrast, color, and texture. In the Boston dataset, each of 28,735 ground truth pixels is labeled as belonging to one of seven classes (beach, ocean, ice, river, park, residential, industrial). For knowledge discovery system training, some ocean, ice, and river pixels are instead labeled as belonging to broader classes such as water or natural. No pixel has more than one label, and the learning system is given no information about relationships between target classes. The labeled dataset is available from the CNS Technology Lab Website [http://techlab.bu.edu/classer/data_sets/].

A cross-validation procedure divides an image into four vertical strips: two for training, one for validation (if needed for parameter selection), and one for testing. Class mixtures differ markedly across strips. For example, one strip contains many ocean pixels, while another strip contains neither ocean nor beach pixels. Geographically dissimilar training and testing areas robustly assess regional generalization. In this article, spatial analysis simulations on the Boston Testbed follow this protocol to illustrate ART systems for self-supervised learning, knowledge discovery, and attentional control. Since each system in Applications 1-3 requires no parameter selection, training uses randomly chosen pixels from three strips, with testing on the fourth strip.

Application 1: Learning from experience with self-supervised ART

Computational models of supervised pattern recognition typically utilize two learning phases. During an initial training phase, input patterns, described as specified values of a set of features, are presented along with output class labels or patterns. During a subsequent testing phase, the model generates output predictions for unlabeled inputs, and no further learning takes place.

Although supervised learning has been successfully applied in diverse settings, it does not reflect many natural learning situations. Humans do learn from explicit training, as from a textbook or a teacher, and they do take tests. However, students do not stop learning when they leave the classroom. Rather, they continue to learn from experience, incorporating not only more information but new types of information, all the while building on the foundation of their earlier knowledge. Self-supervised ART models such life-long learning.

An unsupervised learning system clusters unlabeled input patterns. Semi-supervised learning incorporates both labeled and unlabeled inputs in its training set, but all inputs typically have the same number of specified feature values. Without any novel features from which to learn, semi-supervised learning systems use unlabeled data to refine the model parameters defined using labeled data. Reviews of semi-supervised learning [Chapelle, Schölkopf, & Zien, 2006] have found that many of the successful models are carefully selected and tuned, using a priori knowledge of the problem. Chapelle et al. [2006]
conclude that none of the semi-supervised models they review is robust enough to be general purpose. The main difficulty seems to be that, whenever unlabeled instances are different enough from labeled instances to merit learning, these differences could contain misinformation that may damage system performance.

The self-supervised paradigm models two learning stages. During Stage 1 learning, the system receives all output labels, but only a subset of possible feature values for each input. During Stage 2 learning, the system may receive more feature values for each input, but no output labels. In Stage 1, when the system can confidently incorporate externally specified output labels, self-supervised ART [Amis & Carpenter, 2010] employs winner-take-all coding and fast learning. In Stage 2, when the system internally generates its own output labels, codes are distributed so that incorrect hypotheses do not abruptly override reliable “classroom learning” of Stage 1. The distributed ART learning laws, dInstar [Carpenter, 1997] and dOutstar [Carpenter, 1994], scale memory changes to internally generated measures of prediction confidence, and prevent memory changes altogether for most inputs. Memory stability derives from the dynamic weight representation of long-term memories, which permits learning only in paths to and from highly active coding nodes. Dynamic weights solve a problem inherent in learning laws based on multiplicative weights, which are prone to catastrophic forgetting when implemented with distributed codes and huge datasets, even when learning is very slow.

In addition to emulating the human learning experience, self-supervised learning maps to technological applications that need to cope with huge, ever-changing datasets. A supervised learning system that completes all training before making test predictions does not adapt to new information and individual contexts. A semi-supervised system risks degrading its supervised knowledge. Self-supervised ART continues to learn from new experiences, with built-in safeguards that conserve useful memories. Self-supervised ART code is available from the CNS Technology Lab Website [http://techlab.bu.edu/SSART/].

A simulation study based on the Boston Testbed [Amis & Carpenter, 2010] illustrates ways in which high-dimensional problems may challenge any system learning without labels. As in most ground truth datasets, labeled pixels consist primarily of clear exemplars of single classes. Because sensors have a 15-60m resolution, many unlabeled pixels cover multiple classes, such as ice and industrial. Stage 2 inputs thus mix and distort features from multiple classes, placing many of the unlabeled feature vectors far from the distinct class clusters of the Stage 1 training set. Although the distributed ART learning laws are open to unrestricted adaptation on any pixel, the distributed codes of Stage 2 minimize the influence of mixed pixels. Most memory changes occur on unambiguous cases, despite the fact that the unlabeled pixels provide no external indices of class ambiguity. Self-supervised Stage 2 learning dramatically improves performance compared to learning that ends after Stage 1. On every one of 500 individual simulations, Stage 2 learning improved test accuracy, as unlabeled fully featured inputs consistently expand knowledge from Stage 1 training.

Application 2: Transforming information into knowledge using ART knowledge discovery

Classifying terrain or objects may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from users with different goals and situations. Image fusion has been defined as “the acquisition, processing and synergistic combination of information provided by various sensors or by the same sensor in many measuring contexts.” [Simone, Farina, Morabito, Serpico, & Bruzzone, 2002, p. 3] When multiple sources provide inconsistent data, fusion methods are called upon to appraise information components to decide among various options, and to resolve inconsistencies, as when evidence suggests that an object is a car or a truck or a bus. Fusion methods
weigh the confidence and reliability of each source, merging complementary information, or gathering more data. In any case, at most one of these answers is correct.

The method described here defines a complementary approach to the information fusion problem, considering the case where sensors and sources are both nominally inconsistent and reliable, as when evidence suggests that an object is a car and a vehicle and man-made, or when a car is alternatively labeled automobile. Underlying relationships among classes are assumed to be unknown to the automated system or the human user, as if the labels were encrypted.

The ART knowledge discovery model acts as a self-organizing expert system to derive consistent knowledge structures from such nominally inconsistent data [Carpenter, Martens, & Ogas, 2005]. Once derived, a rule set can be used to assign classes to levels. For each rule \(x \Rightarrow y \), class \(x \) is located at a lower level than class \(y \). Classes connected by arrows that codify a list of rules and confidence values form a graphical representation of a knowledge hierarchy. For spatial data, the resulting diagram of the relationships among classes can guide the construction of orderly layered maps. ART knowledge discovery code is available from the CNS Technology Lab Website [http://techlab.bu.edu/classer/classer_toolkit_overview]. On the Boston Testbed, the ART knowledge discovery system places each class at its correct level and finds all the correct rules for this example.

Application 3: Correcting errors by biasing attention using biased ART

Memories in ART networks are based on matched patterns that focus attention on critical features, where bottom-up inputs match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples demonstrate that paying too much attention to critical features that have been selected to represent a given category early on may distort memory representations during subsequent learning. If training inputs are repeatedly presented, an ART system will correct these initial errors. However, real-time learning may not afford such repeat opportunities. Biased ART (bART) [Carpenter & Gaddam, 2010] solves the problem of over-emphasis on early critical features by directing attention away from initially attended features after the system makes a predictive error.

Activity \(x \) at the ART field \(F_1 \) computes the match between the field’s bottom-up and top-down input patterns (Figure 1). A reset signal shuts off the active \(F_2 \) code when \(x \) fails to meet the matching criterion determined by vigilance \(\rho \). Reset alone does not, however, induce a different code: unless the prior code has left an enduring trace within the \(F_0 - F_2 \) subsystem, the network will simply reactivate the same pattern at \(F_2 \).

Following reset, all ART systems shift attention away from previously active coding nodes at the field \(F_2 \). As modeled in ART 3 [Carpenter & Grossberg, 1990], biasing the bottom-up input to the coding field to favor previously inactive \(F_2 \) nodes implements search by enabling the network to activate a new code in response to a reset signal. The ART 3 search mechanism defines a medium-term memory in the \(F_0 \)-to-\(F_2 \) adaptive filter so that the system does not perseverate indefinitely on an output class that had just produced a reset. A presynaptic interpretation of this bias mechanism is transmitter depletion, or habituation.

The biased ART network [Carpenter & Gaddam, 2010] introduces a second, top-down, medium-term memory which, following reset, shifts attention away from previously active feature nodes at the match field \(F_1 \). In Figure 1, the first feature is strongly represented in the input \(A \) and in the matched patterns \(x \).
at F_1 both before reset (Figure 1b) and after reset (Figure 1d). Following the same sequence as in Figure 1a-c, biased ART would diminish the size of the first feature in the matched pattern. The addition of featural biasing helps the system to pay more attention to input features that it had previously ignored.

The biasing mechanism is a small modular element that can be added to any ART network. While computational examples and Boston Testbed simulations demonstrate how featural biasing in response to predictive errors improves performance on supervised learning tasks, the error signal that gates biasing could have originated from other sources, as in reinforcement learning. Biased ART code is available from the CNS Technology Lab Website [http://techlab.bu.edu/bART].

FUTURE DIRECTIONS

Applications for tested software based on computational intelligence abound. This section outlines areas where ART systems may open qualitatively new frontiers for novel technologies. Future applications summarized here would adapt and specialize brain models that have already been mathematically specified and computationally simulated to explain and predict large psychological and neurobiological databases. By linking brain to mind, these models characterize both mechanism (how the model works) and function (what the model is for). Both mechanism and function are needed to design new applications. These systems embody new designs for autonomous adaptive agents, including new computational paradigms that are called Complementary Computing and Laminar Computing. These paradigms enable the autonomous adaptation in real time of individual persons or machines to nonstationary situations filled with unexpected events. See Grossberg [2012] for a review.

New paradigms for autonomous intelligent systems: Complementary Computing and Laminar Computing

Functional integration is essential to the design of a complex autonomous system such as a robot moving and learning freely in an unpredictable environment. Linking independent modules for, say, vision and motor control will not necessarily produce a coordinated system that can adapt to unexpected events in changeable contexts. How, then, should such an autonomous adaptive system be designed?

A clue can be found in the nature of brain specialization. How have brains evolved while interacting with the physical world and embodying its invariants? Many scientists have proposed that our brains possess independent modules. The brain’s organization into distinct anatomical areas and processing streams shows that brain regions are indeed specialized. Whereas independent modules compute their particular processes on their own, behavioral data argue against this possibility. Complementary Computing [Grossberg, 2000, 2012] concerns the discovery that pairs of parallel cortical processing streams compute computationally complementary properties. Each stream has complementary strengths and weaknesses, much as in physical principles like the Heisenberg Uncertainty Principle. Each cortical stream can also possess multiple processing stages. These stages realize a hierarchical resolution of uncertainty. "Uncertainty" here means that computing one set of properties at a given stage prevents computation of a complementary set of properties at that stage. Complementary Computing proposes that the computational unit of brain processing that has behavioral significance consists of parallel and hierarchical interactions between complementary cortical processing streams with multiple processing stages. These interactions overcome complementary weaknesses to compute necessary information about a particular type of biological intelligence.

Five decades of neural modeling have shown how complementary computing is embedded as a fundamental design principle in neural systems for vision, speech and language, cognition, emotion, and
sensory-motor control. Complementary Computing hereby provides a blueprint for designing large-scale autonomous adaptive systems that are poised for technological implementation.

A unifying anatomical theme that enables communication among cortical systems is *Laminar Computing*. The cerebral cortex, the seat of higher intelligence in all modalities, is organized into layered circuits (often six main layers) that undergo characteristic bottom-up, top-down, and horizontal interactions. As information travels up and down connected regions, distributed decisions are made in real time based on a preponderance of evidence. Multiple levels suppress weaker groupings while communicating locally coherent choices. The distributed ART model (Figure 1), for example, features three cortical layers, with its distributed code (e.g., at a cortical layer 6) producing a distributed output. Stacks of match fields (inflow) and coding fields (outflow) lay the substrate for cortical hierarchies.

How do specializations of this shared laminar design embody different types of biological intelligence, including vision, speech, language, and cognition? How does this shared design enable seamless intercortical interactions? Models of Laminar Computing clarify how these different types of intelligence all use variations of the same laminar circuitry [Grossberg, 2012; Grossberg and Pearson, 2008]. This circuitry represents a revolutionary synthesis of desirable computational properties of feedforward and feedback processing, digital and analog processing, and bottom-up data-driven processing and top-down attentive hypothesis-driven processing. Realizing such designs in hardware that embodies biological intelligence promises to facilitate the development of increasingly general-purpose adaptive autonomous systems for multiple applications.

Complementary Computing in the design of perceptual/cognitive and spatial/motor systems

Many neural models that embody subsystems of an autonomous adaptive agent have been developed and computationally characterized. It remains to unify and adapt them to particular machine learning applications. Complementary Computing implies that not all of these subsystems could be based on variants of ART. In particular, accumulating experimental and theoretical evidence shows that perceptual/cognitive and spatial/motor processes use different learning, matching, and predictive laws for their complementary functions (Figure 2). ART-like processing is ubiquitous in perceptual and cognitive processes, including excitatory matching and match-based learning that enables self-stabilizing memories to form. Vector Associate Map (VAM) processing is often found in spatial and motor processes, which rely on inhibitory matching and mismatch-based learning. In these modalities, spatial maps and motor plants are adaptively updated without needing to remember past maps and parameters. Complementary mechanisms create a self-stabilizing perceptual/cognitive front end for intelligently manipulating the more labile spatial/motor processes that enable our changeable bodies to act effectively upon a changing world.

Figure 2

Some of the existing large-scale ART systems are briefly reviewed here, using visually-based systems for definiteness. Citations refer to articles that specify system equations and simulations, and that can be downloaded from http://cns.bu.edu/~steve.

Where's Waldo? Unifying spatial and object attention, learning, recognition, and search of valued objects and scenes

ART models have been incorporated into larger system architectures that clarify how individuals autonomously carry out intelligent behaviors as they explore novel environments. One such
development is the ARTSCAN family of architectures, which model how individuals rapidly learn to search a scene to detect, attend, recognize, and look at a valued target object [Figure 3; Cao, Grossberg, and Markowitz, 2011; Chang, Grossberg, and Cao, 2014; Fazl, Grossberg, and Mingolla, 2009; Foley, Grossberg, and Mingolla, 2012]. Such a competence represents a proposed solution of the Where’s Waldo Problem.

Figure 3

The ventral What stream is associated with object learning, recognition, and prediction, whereas the dorsal Where stream carries out processes such as object localization, spatial attention, and eye movement control. To achieve efficient object recognition, the What stream learns object category representations that become increasingly invariant under view, size, and position changes at higher processing stages. Such invariance enables objects to be learned and recognized without causing a combinatorial explosion. However, by stripping away the positional coordinates of each object exemplar, the What stream loses the ability to command actions to the positions of valued objects. The Where stream computes positional representations of the world and controls actions to acquire objects in it, but does not represent detailed properties of the objects themselves.

ARTSCAN architectures model how an autonomous agent can determine when the views that are foveated by successive scanning movements belong to the same object, and thus determine which view-selective categories should be associatively linked to an emerging view-, size-, and positionally-invariant object category. This competence, which avoids the problem of erroneously merging pieces of different objects, works even under the unsupervised learning conditions that are the norm during many object learning experiences in vivo. The model identifies a new role for spatial attention in the Where stream; namely, control of invariant object category learning by the What stream. Interactions across the What and Where streams overcome the deficiencies of computationally complementary properties of these streams.

In the ARTSCAN Search model, both Where-to-What and What-to-Where stream interactions are needed to overcome complementary weaknesses: Where stream processes of spatial attention and predictive eye movement control regulate What stream processes whereby multiple view- and positionally-specific object categories are learned and associatively linked to view- and positionally-invariant object categories through bottom-up and object-attentive top-down interactions. What stream cognitive-emotional learning processes enable the focusing of motivated attention upon the invariant object categories of desired objects [Brown, Bullock, and Grossberg, 1999; 2004; Dranias, Grossberg, and Bullock, 2008; Grossberg and Seidman, 2006]. What stream cognitive names or motivational drives can, together with volitional signals, drive a search for Waldo. Mediated by object attention, search proceeds from What stream positionally-invariant representations to Where stream positionally-specific representations that focus spatial attention on Waldo’s position. ARTSCAN architectures hereby model how the dynamics of multiple brain regions are coordinated to achieve clear functional goals.

The focus of spatial attention on Waldo’s position in the Where stream can be used to control eye and hand movements towards Waldo, after navigational circuits (see below) bring the observer close enough to contact him. VAM-type learning circuits have been developed for the control of goal-oriented eye and hand movements that can be used for this purpose [e.g., Bullock and Grossberg, 1988, 1991; Bullock, Cisek, and Grossberg, 1998; Contreras-Vidal, Grossberg, and Bullock, 1997; Gancarz and Grossberg, 1999; Grossberg, Srihasam, and Bullock, 2012; Pack, Grossberg, and Mingolla, 2001; Srihasam, Bullock, and Grossberg, 2009]
The ARTSCENE system [Grossberg and Huang, 2009; Huang and Grossberg, 2010] models how humans can incrementally learn and rapidly predict scene identity by gist, then accumulates learned evidence from scenic textures to refine its initial hypothesis, using the same kind of spatial attentional shrouds that help to learn invariant object categories in ARTSCAN. The ARTSCENE Search system models how humans use target-predictive contextual information to guide search for desired targets in familiar scenes. For example, humans can learn that a certain combination of objects may define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context.

General-purpose vision and how it supports object learning, recognition, and tracking

Visual preprocessing constrains the quality of visually-based learning and recognition. On an assembly line, automated vision systems successfully scan for target objects in this carefully controlled environment. In contrast, a human or robot navigating a natural scene faces overlaid textures, edges, shading, and depth information, with multiple scales and shifting perspectives. In the human brain, evolution has produced a huge preprocessor, involving multiple brain regions, for object and scene representation and for target tracking and navigation. One reason for this is that visual boundaries and surfaces, visual form and motion, and target tracking and visually-based navigation are complementary, thus requiring several distinct but interacting cortical processing streams.

Prior to the development of systems such as ARTSCAN and ARTSCENE, the FACADE (Form-And-Color-And-DEpth) model provided a comprehensive neural theory of form perception, including 3D vision and figure-ground separation [e.g., Cao and Grossberg, 2005, 2012; Fang and Grossberg, 2009; Grossberg, Kuhlmann, and Mingolla, 2007; Grossberg and Swaminathan, 2004; Kelly and Grossberg, 2000]. The 3D FORMOTION model provides an emerging general neural theory of motion processing and form-motion interactions [e.g., Baloch and Grossberg, 1997; Baloch, Grossberg, Mingolla, and Nogueira, 1999; Berzhanskaya, Grossberg, and Mingolla, 2007; Grossberg, Leveille, and Versace, 2011; Grossberg, Mingolla, and Viswanathan, 2001; Grossberg and Rudd, 1992]. The FACADE model has just the properties that are needed for solving the Where's Waldo problem, and the 3D FORMOTION model has just the properties that are needed for tracking unpredictably moving targets. Their complementary properties enabled these extensions.

Visual and spatial navigation, cognitive working memory, and planning

In addition to being able to see, learn, recognize, and track valued goal objects, an animal or autonomous robot must also be able to navigate to or away from them, and to interact with them though goal-oriented hand and arm movements. Navigation is controlled by two distinct and interacting systems: a visually guided system and a spatial path integration system.

Visually guided navigation through a cluttered natural scene is modeled using the 3D FORMOTION model as a front end. The STARS and ViSTARS neural systems [Browning, Grossberg, and Mingolla, 2009a, 2009b; Elder, Grossberg, and Mingolla, 2009] model how primates use object motion information to segment objects, and optic flow information to determine heading (self-motion direction), for purposes of goal approach and obstacle avoidance in response to realistic environments. The models predict how computationally complementary processes in parallel streams within the visual cortex compute object motion for tracking and self-motion for navigation. The models’ steering decisions compute goals as attractors and obstacles as repellers, as do humans.

Spatial navigation based upon path integration signals has been a topic of great interest recently. Indeed,
the 2014 Nobel Prize in Physiology or Medicine was awarded to John O'Keefe for his discovery of place cells in the hippocampal cortex, and to Edvard and May-Britt Moser for their discovery of grid cells in the entorhinal cortex. The GridPlaceMap neural system [Grossberg and Pilly, 2012, 2013a, 2013b; 2014; Mhatre, Grossberg, and Gorchetchnikov, 2012; Pilly and Grossberg, 2014] proposes how entorhinal grid cells and hippocampal place cells may be learned as spatial categories in a hierarchy of self-organizing maps. The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields. Model dynamics match neurophysiological data about their development in juvenile rats. The GridPlaceMap model enjoys several parsimonious design features that will facilitate their embodiment in technological applications, including hardware: (1) similar ring attractor mechanisms process both linear and angular path integration inputs that drive map learning; (2) the same self-organizing map mechanisms can learn grid cell and place cell receptive fields in a hierarchy of maps, and both grid and place cells can develop by detecting, learning, and remembering the most frequent and energetic co-occurrences of their inputs; and (3) the learning of the dorsoventral organization of grid cell modules with multiple spatial scales that occur in the pathway from the medial entorhinal cortex to hippocampus seems to use mechanisms that are homologous to those for adaptively timed temporal learning that occur in the pathway from the lateral entorhinal cortex to hippocampus [Grossberg and Merrill, 1989, 1992; Grossberg and Schmajuk, 1989]. The homologous mechanisms for representing space and time in this entorhinal-hippocampal system has led to the phrase “neural relativity” for this parsimonious design.

Finally, the GridPlaceMap model is an ART system. It proposes how top-down hippocampus-to-entorhinal attentional mechanisms may stabilize map learning, and thereby simulates how hippocampal inactivation may disrupt grid cell properties and explains challenging data about theta, beta, and gamma oscillations.

Visual and path integration information cooperate during navigation. Cognitive planning also influences navigational decisions. More research is needed to show how learning fuses visual, path integration, and planning circuits into a unified navigational system. The design of a general planning system will be facilitated by the fact that similar circuits for short-term storage of event sequences (working memory) and for learning of sequential plans are used by the brain to control linguistic, spatial, and motor behaviors [Grossberg and Pearson, 2008; Silver, Grossberg, Bullock, Histed, and Miller, 2011].

Social cognition

How can multiple autonomous systems interact intelligently? Individuals experience the world from self-centered perspectives. What we learn from each other is thus computed in different coordinates within our minds. How do we bridge these diverse coordinates? A model of social cognition that explains how a teacher can instruct a learner who experiences the world from a different perspective can be used to enable a single human or robotic teacher to instruct a large “class” of embodied robots that all experience the teacher from different perspectives.

Piaget’s circular reaction notes the feedback loop between eye and hand in the learning infant, laying the foundation for visually guided reaching. Similarly, feedback between babbled sounds and hearing forms the learned substrate of language production. These intra-personal circular reactions were extended to inter-personal circular reactions within the CRIB (Circular Reactions for Imitative Behavior) model [Grossberg and Vladusich, 2010]. This model shows how social cognition builds upon ARTSCAN mechanisms. These mechanisms clarify how an infant learns how to share joint attention with adult teachers and to follow their gaze towards valued goal objects. The infant also needs to be
capable of view-invariant object learning and recognition whereby it can carry out goal-directed behaviors, such as the use of tools, using different object views than the ones that its teachers use. Such capabilities are often attributed to mirror neurons. This attribution does not, however, explain the brain processes whereby these competences arise. CRIB proposes how intra-personal circular reactions create a foundation for inter-personal circular reactions when infants and other learners interact with external teachers in space. Both types of circular reactions involve learned coordinate transformations between body-centered arm movement commands and retinotopic visual feedback, and coordination of processes within and between the What and Where cortical processing streams. Specific breakdowns of model processes generate formal symptoms similar to clinical symptoms of autism.

Mental disorders and homeostatic plasticity

Optimally functioning autonomous intelligent systems require properly balanced complementary systems. What happens when they become imbalanced? In humans, they can experience mental disorders.

Scientific literature on human mental disorders such as autism and schizophrenia is, of necessity, more anecdotal than parametric, and is, therefore, an insufficient foundation for model construction. Real-time models of normal mental behavior that are based on the huge databases from decades of psychological and neurobiological experiments have, however, provided insights into the mechanisms of abnormal behaviors [e.g., Carpenter and Grossberg, 1993; Grossberg, 1984, 2000a, 2000b; Grossberg and Seidman, 2006].

Imbalanced processes across the complementary systems that control normal behaviors can produce constellations of model symptoms that strikingly resemble mental disorders. For example, fixing the ART vigilance parameter ρ at too high a level leads to symptoms familiar in autistic individuals, notably learning of hyper-concrete categories, and difficulty paying attention to the meaning of a task. Underarousal of the model amygdala can lead to insensitivity to social meanings and also to intense emotional outbursts, and coping strategies to reduce event complexity and unexpectedness. Damage to the model cerebellum can lead to defects of adaptively timed learning, and thus a host of problems in socialization.

In both humans and robots, it remains an open problem to model how biologically-based autonomous systems can discover and maintain their own optimal operating parameters in response to the challenges of an unpredictable world. An initial step towards solving this homeostatic plasticity problem was made in Chandler and Grossberg [2012].

Machine consciousness?

An early ART prediction is that all conscious states are resonant states, though not all resonant states are conscious. Since that time, ART has predicted how specific resonances support different kinds of consciousness. These observations suggest the question: Can machines that embody ART resonant dynamics experience a type of consciousness? For example, ART models predict that surface-shroud resonances subserve conscious percepts of visual qualia, cognitive-emotional resonances subserve the core consciousness that embodies conscious percepts of feelings, feature-category resonances subserve recognition of familiar objects and scenes, item-list resonances subserve conscious percepts of speech and language, and spectral-pitch resonances subserve conscious percepts of auditory streams. ART models also identify the brain regions and interactions that would support these resonances.
These results about model correlates of consciousness emerge from ART analyses of the mechanistic relationships among processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (the CLEARS processes). Recall, however, that not all resonant states are conscious states. For example, entorhinal-hippocampal resonances are predicted to dynamically stabilize the learning of entorhinal grid cells and hippocampal place cells, and parietal-prefrontal resonances are predicted to trigger the selective opening of basal ganglia gates to enable the read-out of context-appropriate actions. Grossberg [2012, 2013] reviews these and other aspects of ART as a cognitive and neural theory.

RECOMMENDED READING

Carpenter, GA (1994) A Distributed Outstar Network for Spatial Pattern Learning. Neural Networks 7: 159–168
Carpenter GA (1997) Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks. Neural Networks 10: 1473–1492
Figure 1. Distributed ART (dART) [Carpenter, 1997]. (a) At the field F_0, complement coding transforms the feature pattern a to the system input A, which represents both scaled feature values $a_i \in [0,1]$ and their complements $(1-a_i)$ ($i=1 \ldots M$). (b) F_2 is a competitive field that transforms its input pattern into the working memory code y. The F_2 nodes that remain active following competition send the pattern σ of learned top-down expectations to the match field F_1. The pattern active at F_1 becomes $x = A \land \sigma$, where \land denotes the component-wise minimum, or fuzzy intersection. (c) A parameter $\rho \in [0,1]$, called vigilance, sets the matching criterion. The system registers a mismatch if the size of x is less than ρ times the size of A. A top-down / bottom-up mismatch triggers a signal that resets the active F_2 code. (d) Medium-term memories in the F_0-to-F_2 dynamic weights allow the system to activate a new code y. When only one F_2 node remains active following competition, the code is maximally compressed, or winner-take-all. When $|x| \geq \rho|A|$, the activation pattern y persists until the next reset, even if input A changes or F_0-to-F_2 signals habituate. During learning, thresholds τ_{ij} in paths from F_0 to F_2 increase according to the dInstar law; and thresholds τ_{ji} in paths from F_2 to F_1 increase according to the dOutstar law.
Figure 2. Complementary What and Where cortical processing streams for spatially-invariant object recognition and spatially-variant spatial representation and action, respectively. Perception and recognition use top-down excitatory matching and match-based fast or slow learning without catastrophic forgetting. Spatial and motor tasks use inhibitory matching and mismatch-based learning to achieve adaptation to changing bodily parameters. IT = inferotemporal cortex, PPC = posterior parietal cortex.
Figure 3. ARTSCAN Search macrocircuit and corresponding brain regions. Dashed boxes indicate boundary and surface preprocessing. (a) Category learning system. Arrows represent excitatory cortical processes. Spatial attention in the Where stream regulates view-specific and view-invariant category learning and recognition, and attendant reinforcement learning, in the What stream. Connections ending in circular disks indicate inhibitory connections. (b) Where's Waldo search system. Search begins when a Name Category or Value Category is activated and subliminally primes an Object-Value Category via the ART matching rule. A Volition Control signal enables the primed Object-Value Category to fire output signals. Bolstered by Volitional Control signals, these output signals can, in turn, propagate through a (positionally-invariant) Object Category to all the (positionally-variant) View Category Integrators whose various views and positions are represented by the Object Category. The View Category Integrators can subliminally prime, but not fully activate, these View Categories. All this occurs in the What stream. When the bottom-up input from an object’s boundary/surface representation also activates one of these View Categories, its activity become suprathreshold, wins the competition across View Categories for persistent activation, and activates a spatial attentional representation of Waldo’s position in the Where stream. ITa: anterior part of inferotemporal cortex, ITP: posterior part of inferotemporal cortex, PPC: posterior parietal cortex, LIP: lateral intra-parietal cortex, LGN: lateral geniculate nucleus, ORB: orbitofrontal cortex, Amyg: amygdala, BG: basal ganglia, PFC: prefrontal cortex, SC: superior colliculus, V1: striate visual cortex, V2, V3 and V4: prestriate visual cortices.